铄思百检测

DETECTION OF TECHNICAL SOUSEPAD

透射电子显微镜(TEM-EDS)扫描电子显微镜(FESEM-EDS)球差电镜激光共聚焦显微镜(LSCM)原子力显微镜(AFM)电子探针仪(EPMA)金相显微镜电子背散射衍射仪(EBSD)台阶仪,膜厚仪,探针接触式轮廓仪,3D轮廓仪工业CT白光干涉仪(非接触式3D表面轮廓仪)电镜测试FIB制样离子减薄制样冷冻超薄切片制样树脂包埋制样(生物制样)液氮脆断制样金网钼网铜网超薄碳膜微栅制样电镜制样X射线光电子能谱分析仪(XPS)紫外光电子能谱(UPS)俄歇电子能谱(AES)X射线衍射仪(XRD)X射线散射仪SAXS/WAXSX射线残余应力分析仪X射线荧光光谱分析仪(XRF)电感耦合等离子体光谱仪(ICP-OES)紫外可见反射仪(DRS)拉曼光谱(RAMAN)紫外-可见分光光度计(UV)圆二色谱(CD)傅里叶变换红外光谱分析仪(FTIR)吡啶红外(DRIFTS)单晶衍射仪穆斯堡尔光谱仪稳态瞬态荧光光谱分析仪(PL)原子吸收分光光度计原子荧光光度计(AFS)三维荧光 /荧光分光光度计红外热成像仪雾度仪旋光仪椭偏仪光谱测试电感耦合等离子体质谱仪(ICP-MS)电喷雾离子化质谱仪(ESI-MS)顶空-固相微萃取气质联用仪(HS -SPME -GC -MS)二次离子质谱(SIMS)基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF)裂解气质联用仪(PY-GC-MS)气质联用仪(GC-MS)同位素质谱仪液质联用仪(LC-MS)质谱测试差示扫描量热仪(DSC)热重分析仪(TGA)热分析联用仪(DSC-TGA)静态/动态热机械分析仪(TMA/DMA)热重红外联用仪(TG-IR)热重红外质谱联用仪(TG-IR-MS)热重红外气相质谱联用(TG-IR-GC-MS)红外热成像仪激光导热仪锥形量热仪(CONE)热谱测试电子顺磁共振波谱仪(EPR、ESR)固体核磁共振仪(NMR)液体核磁共振仪(NMR)微波网络矢量分析仪/矢量网络分析仪核磁顺磁波谱测试比表面及孔径分析仪(BET)表面张力仪(界面张力仪)高压吸附仪化学吸附仪(TPD TPR)接触角测量仪纳米压痕仪压汞仪(MIP)表界面物性测试气相色谱仪(GC)高效液相色谱仪(HPLC)离子色谱仪(IC)凝胶色谱仪(GPC)液相色谱(LC)色谱测试电导率仪电化学工作站腐蚀测试仪介电常数测定仪卡尔费休水分测定仪自动电位滴定仪电化学仪器测试Zeta电位仪工业分析激光粒度仪流变仪密度测定仪纳米粒度仪邵氏 维氏 洛氏硬度计有机卤素分析仪(F,Cl,Br,I,At,Ts)有机元素分析仪(EA)粘度计振动样品磁强计(VSM)土壤分析测试植物分析测试其他测试同步辐射GIWAXS GISAXS同步辐射XRD,PDF,SAXS同步辐射吸收谱-高能机时同步辐射吸收谱之软X射线同步辐射吸收谱之硬X射线同步辐射聚焦离子束扫描电镜(FIB-SEM)矿物定量分析系统MLA球差校正透射电子显微镜高端电镜类原位XPS测试原位EBSD(in situ -EBSD)原位红外原位扫描电子显微镜(in-situ-SEM)原位透射电子显微镜高端原位测试飞行时间二次离子质谱仪(TOF-SIMS)辉光放电光谱(GD-OES MS)三维原子探针(APT)高端质谱类Micro/Nano /工业CT飞秒瞬态吸收光谱仪(fs-TAS)扫描隧道显微镜深能级瞬态谱仪正电子湮灭寿命谱仪其他XPS数据分析XRD全岩黏土分析表面成分分析技术-XPS测试分析常规XRD数据分析成分指纹分析技术-红外测试分析二维红外光谱技术红外(IR)数据分析拉曼数据分析三维荧光数据分析圆二色谱(CD)数据分析成分含量分析EPR/ESR数据分析VSM数据分析电化学数据分析矢量网络数据分析电磁分析CT数据分析X射线吸收精细结构普(XAFS)数据分析穆斯堡尔谱数据分析小角散射(SAXS/WAXS)数据分析高端测试分析固体核磁数据分析液体核磁(NMR)测试+分析一体化液体核磁(NMR)数据分析化学结构分析EBSD数据分析TEM数据分析单晶XRD数据分析晶体结构确证技术-XRD精修XRD定性定量分析晶体结构分析BET数据分析其它数据分析需求热分析数据处理数据分析作图其他数据分析常规理化-水样常规理化-土样/沉积物常规理化-气体常规理化-植物/蔬果/农作物常规理化-食品常规理化-肥料/饲料常规理化-岩矿常规理化-垃圾常规理化-职业卫生常规理化-其它常规理化项目纤维素、半纤维素、木质素含量bcr形态顺序提取/tessier五步提取法土壤水体抗生素微塑料微生物磷脂脂肪酸(PLFA)非标理化-其它非标理化项目稳定同位素放射性同位素同位素-其它金属同位素同位素多糖的单糖组成测定可溶性寡糖定量土壤氨基糖多糖全套分析多糖甲基化植物糖化学-常规指标糖化学液质联用LCMS高效液相色谱HPLC气相色谱GC气质联用GCMS全二维气质GC×GC-MS气相色谱-离子迁移谱联用仪(GC-IMS)液相色谱-原子荧光联用(LC-AFS)制备型HPLC色谱质谱数据分析液相色谱-电感耦合等离子体质谱(LC-ICPMS)色谱质谱DOM(FT- ICR- MS)水质NOM(LC-OCD-OND)DOM(FT-ICR-MS)数据分析环境高端电池产品整体解决方案正极颗粒表面微观形貌正极颗粒物截面形貌与元素三元正极颗粒循环前后晶界裂纹正极颗粒掺杂元素分布正极颗粒截面元素分布和晶格表征正极极片原位晶相分析正极极片截面元素分布和晶格表征正极表面CEI膜测试方法XPS正极极片截面微观形貌观察和元素分布正极极片CEI膜成分分析与厚度测定正极极片介电常数正极极片浸润性正极极片包覆层观察正极极片杂质含量测定正极极片氧空位测定负极颗粒表面微观形貌观察和元素分布负极颗粒截面微观形貌观察和元素分布石墨类型判定负极颗粒粒径分析负极极片孔洞分析负极颗粒包覆层观察负极颗粒羟基含量测定负极极片包覆层观察负极表面SEI膜分析XPS法负极极片SEI膜成分分析与厚度测定负极极片截面微观形貌观察和元素分布负极极片石墨碳和无定型碳比例隔膜表面微观形貌观察隔膜循环前后孔径变化质子交换膜形貌(厚度)观察 CP+SEM质子交换膜杂质元素电池循环后鼓包气电池循环后爆炸气锂电池极片和集流体间的粘结强度三元正极材料NCM比例燃料电池-整体解决方案电池产品-隔膜电池产品-优势项目正极材料-PH值正极材料-比表面积正极材料-磁性异物正极材料-化学成分正极材料-晶体结构正极材料-粒径分布正极材料-首次放电比容量及首次库伦效率正极材料-水分含量正极材料-松装密度正极材料-未知物分析正极材料-形貌,厚度与结构正极材料-压实密度正极材料-振实密度电池产品-正极材料负极材料-PH值负极材料-比表面积负极材料-层间距 石墨化度负极材料成分分析负极材料-磁性异物负极材料-粉末压实密度负极材料-固定碳含量负极材料-化学成分负极材料-粒径分布负极材料-石墨鉴定负极材料-水分负极材料-限用物质含量负极材料-形貌与结构负极材料-阴离子的测定负极材料-有机物含量负极材料-真密度负极材料-振实密度负极颗粒-石墨取向性(OI值)首次放电比容量及首次库伦效率电池产品-负极材料电解液-电导率电解液-化学元素含量电解液-密度电解液-水分含量电解液-未知物分析电解液-游离酸(HF含量)电池产品-电解液电池产品-隔膜电池产品-隔膜
设为首页 | 收藏本站

透射电镜观察有机无机杂化钙钛矿

 二维码
发表时间:2020-07-02 14:08作者:铄思百检测来源:铄思百检测

透射电镜观察有机无机杂化钙钛矿

近年来,由于高效的光电转换效率,基于有机无机杂化钙钛矿材料(CH3NH3PI3,MAPbI3)的太阳能电池得到了飞速发展。近十年来,其光电转换效率已从最初的3.8%迅速增长至目前的25.2%,几乎可以媲美单晶硅太阳能电池。然而该技术的商业化应用却受限于杂化钙钛矿材料的结构不稳定性,高温、氧气、潮湿环境、光照等加速材料分解进而引起器件性能衰减。因此,有必要深化对降解机理的认识,从而指导器件设计和材料的合成。

近日,北京大学、哈尔滨工业大学、石家庄铁道大学、中科院深圳先进技术研究院等单位合作,利用透射电子显微镜,系统研究了有机无机杂化钙钛矿在电子辐照下的结构不稳定性,揭示了有机无机杂化钙钛矿普适性的分解路径,探究了影响其分解的主要因素,提出了抑制分解的有效策略,并且根据它们对电子束敏感的特征,提出了在电镜表征过程中如何正确判断是否有分解以及缓解分解过程等。相关成果分别发表在 Advanced MaterialsScience Bulletin上,来自哈尔滨工业大学和北京大学联合培养博士研究生陈树林和石家庄铁道大学研究生张颖为文章的共同第一作者,北京大学高鹏研究员、哈尔滨工业大学亓钧雷教授、石家庄铁道大学赵晋津教授和中科院深圳先进技术研究院李江宇教授为共同通讯作者,详见:

  • General decomposition pathway of organic-inorganic hybrid perovskites through an intermediate superstructure and its suppression mechanism, Advanced Materials, 2020, 2001107, doi: 10.1002/adma.202001107;

  • Transmission electron microscopy of organic-inorganic hybrid perovskites: myths and truths, Science Bulletin 2020 (in press), arXiv:2004.12262.

该合作团队在过去几年一直致力于有机无机杂化钙钛矿分解机理的研究。他们通过自生长方式利用温度梯度和毛细效应,在多级孔半导体基底上自主装制备了高质量的MAPbI3大单晶薄膜(Science Bulletin 62, 1173–1176, 2017)。他们借助透射电子显微镜,通过严格控制电子束剂量率,研究了大单晶MAPbI3的电子衍射标定问题,发现了该材料即使在低电子束剂量下也不稳定,估计了在电子束辐照条件下避免损伤的阈值条件,并揭示了相应的分解路径(Nature Communications, 9, 4807, 2018)。在前期工作的基础上,他们最近进一步验证了所提出的分解路径是否具有普适性,并探究了影响分解的主要因素,提出了抑制分解的策略。

成果1

有机无机杂化钙钛矿普适性的分解路径及抑制

研究者首先通过低电子束剂量率(1 e Å-2 s-1)的电子衍射技术表征了单晶MAPbI3,发现随着电子束剂量的增加,衍射图谱中会产生超结构衍射点,他们认为超结构衍射点可能是由有序的卤族离子空位(MAPbI2.5)导致的。并且模拟的电子衍射可以较好地和实验的电子衍射图谱吻合,说明了这种有序空位结构的合理性。同样地采用电子衍射成像,他们在MAPbBr3以及无机钙钛矿CsPbBr3中也发现了含有有序卤族离子空位的超结构相,这表明ABO2.5形式的有序空位不仅仅是MAPbI3中的特例,在有机无机杂化钙钛矿及全无机钙钛矿中也普遍存在,类似于在ABO2.5形式的钙钛矿氧化物中观察到的空位。

图1. MAPbI3和MAPbBr3中形成的超结构

超结构衍射点代表的有序空位是由于电子照射下卤族离子的丢失所致,因此与杂化钙钛矿的分解密切相关。连续的电子衍射分析表明,MAPbI3的分解可能先是由碘离子的丢失引起的,形成超结构相MAPbI2.5,然后进一步丢失甲胺根离子和剩余的碘离子形成MAyPbI2.5-z (0≤y≤1和0≤z≤0.5),伴随着超结构相的消失,最后分解成PbI2。类似的分解过程在MAPbBr3辐照过程中也被观察到。故而无论是四方的MAPbI3还是立方的MAPbBr3,在电子束的辐照下都会产生有序的卤族离子空位,生成MAPbX2.5中间相,并进一步丢失甲胺根离子和剩余的卤族离子,最终造成钙钛矿结构的崩塌,生成卤族铅化物(PbX2)。

值得注意的是,由于MAPbI3的分解产物PbI2的电子衍射图谱和MAPbI3的衍射图谱十分接近(通常PbI2会比MAPbI3少一些衍射点),但很多文献却没有注意到这些细微的差别,从而错误地把PbI2的衍射图谱标定成MAPbI3(如表1所示)。相比较而言,文献里MAPbBr3的电子衍射标定几乎都是正确的,因为MAPbBr3结构相对较稳定,损伤的阈值剂量要更高。

图2. MAPbI3和MAPbBr3普适的分解路径

表1.文献中关于MAPbI3电子衍射或者快速傅里叶变化图谱的研究

可以注意到,这类杂化钙钛矿在较低的剂量下就会发生损伤并分解成卤族铅化物。这极大地阻碍了精细的电镜表征,包括原位实验研究其在不同外场下的分解机理,故而有必要探究如何去抑制分解、稳定结构。研究者通过对连续的电子衍射图谱分析发现当电子束剂量为791 e Å-2时,MAPbI3就已经完全分解成PbI2了。而在MAPbI3上下两面都包覆上薄层的非晶碳后(~10 nm),由于较薄的非晶碳层可以作为扩散的障碍层,阻碍了离子的丢失,所以即使电子束剂量增加到7600 e Å-2,钙钛矿的特征衍射点(002)依旧可以被观察到,说明包覆可以起到稳定结构抑制分解的作用。研究者进一步通过SEM-EDS的定量分析和形貌演变说明了碳包覆抑制分解的作用。

图3. 碳包覆对分解的抑制

成果2

有机无机杂化钙钛矿透射电镜表征的虚与实

另外,研究者利用低电子束剂量成像技术系统地研究了不同实验条件下杂化钙钛矿的结构不稳定性,揭示了最优的透射电镜表征条件(Transmission electron microscopyof organic-inorganic hybrid perovskites: myths and truths, Science Bulletin2020 (in press), arXiv:2004.12262.)。他们利用透射电镜低温杆(Gatan636)将温度降到−180 ℃,观察到当电子束剂量为150 eÅ-2时,钙钛矿就已经发生了非晶化转变。而在常温和较高温(90 ℃)的时候,均需要较大的电子束剂量(450–520 e Å-2)才能诱发MAPbI3到PbI2的转变。这说明低温并没有阻碍钙钛矿的分解,反而会导致快速的非晶化转变。

图4. 温度对MAPbI3电子束敏感性的影响

此外研究者还探究了电子束加速电压以及钙钛矿的暴露晶面对其稳定性的影响。他们发现较高的加速电压有利于降低损伤,进而说明了有机无机杂化钙钛矿的损伤机理主要为电离损伤机制(radiolysis),而非碰撞损伤(knock-on)或加热效应(heating)。故而说明表征有机无机杂化钙钛矿时应该用相对较高的电压以降低损伤。此外他们还发现MAPbI3 (100)面比(001)面更稳定,这可能是由于碘离子在(100)面的扩散势垒高,难以扩散,从而表现得更加稳定。此发现也可以对晶面调控工程给予指导,例如合成(100)面暴露的钙钛矿有可能提高钙钛矿太阳能电池的稳定性。

图5. 加速电压和暴露的晶面对MAPbI3电子束敏感性影响

基于这些发现,他们借助于直接电子探测相机(K2),在电子束剂量为3.1e Å-2时,成功拍摄了MAPbI3原始的原子结构,其对应的傅里叶变换图谱可以和模拟的衍射图谱吻合。而当电子束剂量增加为 6.2 e Å-2,对应的傅里叶变换图谱中就出现了微弱的超结构衍射点;当剂量进一步增加到24.9 e Å-2,超结构衍射点变得较为明显。这些发现进一步表明了杂化钙钛矿对电子束的敏感性,只有较窄的窗口才能实现无损表征。

图6. MAPbI3和超结构相的原子结构

总结与展望

在以往的大量研究中,有机无机杂化钙钛矿的透射电镜表征是在较高电子束剂量下进行的,它们对电子束的高度敏感性容易被忽略。因此,即使对于相对剂量较低的衍射模式成像,得到的实验数据与理论也存在差异。考虑到HRTEM、STEM、EELS和EDS下的剂量通常比电子衍射成像高得多,故而预计会产生更严重的损伤。对于这些损伤,有利的一面是帮助我们理解这些材料的失效机理,也为理解实际器件的失效机制提供了一些有益的启示。另一方面,还可以在显微镜中探究通过包覆等策略抑制其分解的机制,进而为器件设计提供有益参考。值得注意的是,虽然关于失效机制已经有一些原位TEM研究报道,但考虑到他们使用的电子束剂量较高,因而电子束诱导的损伤可能对实验现象造成了较大得影响。(透射电子显微镜)

若有检测需求可拨打咨询热线或点击在线咨询,将会有工程师为您详细解答,欢迎您的来电!

铄思百检测动态

电镜检测,电镜制样,光谱检测,热谱检测,核磁顺磁波普测试,质谱检测,色谱检测,表介面物性分析其他测试等等

更多测试请咨询在线客服

测试流程

1、客户提出测试要求(在线预约

2、细节沟通(联系在线QQ

3、下载填写测试委托单

4、测试委托单和样品邮寄

5、联系客服付款

6、安心等待

7、接受数据

8、后期服务

以上是对于测试的相关介绍,如有其它检测需求可以咨询实验室工程师,为您一对一服务。

温馨提示

1、不定期推出各种优惠活动,详情咨询客服。

2、测试前联系在线客服确认测试条件、检测费用、检测周期等。

检测咨询热线:15071040697   黄工  QQ:82187958

公司网站:www.sousepad.com

武汉铄思百检测技术有限公司


在线客服
 
 
 工作时间
周一至周六 :8:00-18:00
 联系方式
客服-黄工:150 7104 0697
客服-刘工:18120219335